
UDC 62-50 

ON TIiR INFORMATION AVAILAELR TO PLAYERS IN A DIFFKRBNTIAL GAME 

PMM Vol. 36, fl5, 1972. pp. 917-924 

P. B. GUSIATNIKOV 

(Moscow) 

(Received May 3, 1971) 

We consider three possible statements of the problem of termination of a dif- 

ferential game from a given point. We derive sufficient conditions for the 
completion of a linear differential game under a significant discrimination 
of the pursuer. 

1. Let the motion of a vector z in an n-dimensional Euclidean space R be descri- 
bed by the vector differential equation 

dzldt = f (z, I(, v) (1) 

where uEJ’ and UEQ are control parameters varying on sets P and Q which are com- 
pact in R . Regarding the right-hand side of Eq. (1) we assume that: 

a) f (z, u, u) is continuous in (z, u, uj E R X P x Q; 
b) the inequality 

I f (Zl! u, ti) - f (z2, ‘19 c) I ..( k I z, -- sp 1 

where k is a constant depending only on C , is fulfilled for any 11 E P, v E Q and for 

21, zs E R, lz,l < C, I 22 1 - C ; 

c) there exists a constant B such that 

I z.1 (z, u, v) ) :-.. II (1 + ( z [ 2) 

holds for all ZER, rcEP. GEQ; 

d) the set f(z, P, u) is convex for any z e R, UEQ. Furthermore, let a certain 

closed set M be specified in I< . We say that rhe data listed above describe a differen- 
tial game (1). 

The measurable vector-valued functions U* = (u (I), t > u}, u* j (0 (t), t .> 01, 
satisfying the inclusions u (1) E P. 1: (t) E Q for each t , are called the controls of the 
players U and V , respectively. The goal of the player (/ is to drive the point z onto 

set M, while player V seeks to prevent this. The game is completed when the vector 

z first hits onto M. We remark that when conditions (a)- (d) are fulfilled, for any 
z. E IS (0 ;: T 4 T) and for any pair of controls LL*. u* defined on IT, TJ, there exists, 

and is unique [ 11, a solution z (t) (T :.:< t -c T) of Eq. (1) with the initial condition 

z (0) = zu (i.e. a vector-valued function ‘z (1), absolutely continuous on Ir, 7’1 , satisfy- 
ing Eq. (1) almost everywhere). The function z (t) is called the motion and is denoted 

z (1) = 2 (1; T, L,,. (( I,<( L.*, 7’). For fixed T, T, c* the set of motions is compact [2, 31: 

if 2; -- z,, as i 4 .\3, then from any sequence of motions Zi (t) = z (1; T, Zi* 1Li.q V*. T) 
we can select a subsequence zni (1) converging, uniformly on Ir, T] to some motion 
J (I: T. ‘<,. II mc. I.*, 7‘). Uniform convergence on Ir. T] will be denoted by the symbol 

We say that game (1) can be completed from a point z0 in time I t (~0) if (whatever 
be rhe control c* of player I’) the player u can so construct his own control u* that 
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the point z (t) = s (t; 0, ~0, u*, u*, t) hits onto the set M no later than in a time 1 (z”). 
As regards the information available to player U we assume here that each instant t he 

knows z (t) and 
( I) the a-sprout of the control of player I,‘, i.e. v (s). t ‘: s .CZ t -I- c; 
(II) u(S),S<t; 

( III) he is forced to give his E-sprout u (s) (t < s -,C t f ~1, after which player 
1’ chooses the control v (t) . 

In this paper we prove that statements ( I ) and ( I I ) of the problem of terminating 

game ( 1) from a given point z0 are, in a specific sense, equivalent. For this purpose we 

introduce an operator F, (an analog of the operator 7‘, in [4]) and to the differential 

game (1) we apply the method of the authors of [4, 51 in combination with the construc- 

tions in [S]. The proofs of the assertions made are obtained by a formal replacement of 

I’, by F, (the role of the lemma in Sect. 11 of [S] is here played by Lemma 1 proved 

below), and we omit them. Below we have pointed out the case when a certain time 

T = I’ (zO) of completion of game (1) from a given point zO, determined for statement 

( I), is sufficient for its termination in the sense of statement ( I I I ). 

2. Let e be an arbitrary positive number. We define an operator K,: 2” - 2” in 
the following manner: for any X C I( the point zJ belongs to set f;E (X) if and only if 

(whatever be the control G* of player I’) we can find a control U* of player L; such 
that z (E) = z (E; 0, z,,, ,L*, L’*, EJ e A. We note the following properties of operator fi, 

141: 
1’. If .A, C X2. then I’, (‘\,: C: 1.‘: (A,); 
2’. k‘:, VL, (S)) i: k’:;__. r.i,; 

3’. If A\ is closed, then k’, (X) is also closed; 

4.. If {Si\:‘-, is a sequence of closed sets such that A,+, c xi fi = I, 2,...), 

then 
f: ;, . t 

t > I-_-L y. 
_ ,~, F, (,~i) 

kt t be an arbitrary positive number. Every set 01 = {T,, T1. . . . , T,,,} of real num- 
bers l,, = U / T, ’ .__,... \ Tm == : is called a partitioning of the interval ]u, tj. We set 
di - Ti - Ti-I (I -7 I, .,., nt) and 1 co:/ = mu bi. On the set of all partitionings of 
interval IO,11 we introduce an order relation < by setting oI’ < al” if and only if each 
point of partitioning 0;’ is a point of partitioning WI”. With every partitioning m1 of 
interval 10. r] we associate an operator I.“,‘,: 2” - 2” acting in the following manner: 

From properties 1’ - 4” it follows that: 

5”. If .V is closed, then I’,! (X) is also closed. 

6’. If w,’ < WI’,. then I,‘,,,’ (XJ ~1 I’, ’ (X). 
Lemma 1. Let X be closed, let 01 = ( :t, Tlr ..-) %I 1 be an arbitrary partitioning 

of interval [u, t] ,and let the sequence {TI’~}~=^=, be such that T, ., T,:' C: T2; Trc - Tb 

as Ii . L. Then 
fl /.;,,; (X) :- /‘,Y, (A’), 
i,’ 

0,” = (To, Tl’, T2, . . . . 5,) 

For the proof of the lemma we need a number of definitions. For each I > o , by L:’ 

(I”) we denote the set of all controls of player L’ (of player I ), defined on [u, 11 Let 

Z” E I(, x c 11, or = jr,, T1, . . . . %,,I be an arbitrary partitioning of interval ]U, 11 , 
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and D be a subset of V’. The mapping g = g (z@, X , o,, 0;: D A ~1 is called the 
01 -quasi-strategy at point so relative to set X if: 

a) whatever be VI** Q* E Lt and k < m, from the equahq I+ (s) s u, (s), 0 +. s b 

Tm - “h , the= follows the equality u1 (s) = g (R+) (s) m us (s) = g (Q*) ts) (0 < E % 

Tm - td (4 IS) = i? (vi*) (s) is the value of the function I@ = g (vi*) E ~1 at point s; 
b) for any U* ED there holds the inclusion z (1) = z (l; 0, zn, g (v*), u*, t) E A. 

It is easy to verify the following: 
Assertion 1. Let 20 E fi, X C A. The inclusion 20 E F,, (X) holds if and only 

if the quasi-strategy g (z,, X, wt, VI) exists. 
We go on to prove lemma 1. Iet 

zn e v pu k by) 
1 

Then by virtue of Assertion 1 there exists a sequence of quasi-strategies gk: = g (s,, X, 
$11, V. The quasi-strategy g = g (zs, X, at, D) is called a c -quasi-strategy if for 
any u* ED there exists a subsequence (gnki such that 

s (G 0, RI! gnk (v*), v*, 0 ==+ 2 (s; o,zp, g (o+), v*, 0, s E [O, r] 

The set of c-quasi-strategies is nonempty. Indeed, let Un* be an arbitrary element of 
y:. Then by virtue of the compactness of the set of motions, from the sequence of 
Zk b$ = z (8; 0, x0, gk fvO*h UO’, t) we can single out a subsequena cOnVerf@g Uoi- 

tormly to some motion z (st = z (s; 0, zO, utb*, JJO”, tf. The mapping g = g (aor X, 6% 

m*), whose domain is the single point u.,*, while g (vO*) = w,*, is obviously a c-quasi- 
strategy (the inclusion z (t) EX follows from the closedness of X). 

On the set of c -quasi-strategies we introduce an order relation c by setting g, (it), X, 

tot, I),) < g, (z,, X, wt, Dn) if and only if Lti c 0, and for any U* ED, there holds 
g, iv*) (s) m g, (v*) (s), 0 G s < t. It is easly verified that every linear ordering (see 01) 
of the set F of c-quasi-strategies has a majorant. For example, a majorant is a c-quasi- 
strategy g* with a domain U* = UU (the union of the right-hand side is taken over 
the whole domain of c-quasi-strategies occurring in 1;) such that for any v* E U* (and, 
~o~equently, u E D for some g = g (z,, X, w[, 0) E k’) there is fulfilled g* (Y’) = 
g (Y*). In accordance with Zom’s lemma 171, in the set of c-quasi-strategies there exlstf 
a maximal element ge = g,, (z, X, wt, DO). Iet us show that 0, =- I ‘, which, in accord- 
ance with Assertion 1, completes the proof of the lemma. We assume the contrary. Let 
U6* Cl2 i”‘\k We then define a mapping g, = g* (z,, X, (v~, UOU~~.,*) as follows: if 
V* EDo, we set g* ((I*) (St 55 go (u*) (4 (0 G s < & We define the function g* (L*c+*) as 
follows: by k, (1 ? k, \ I),) we denote the smallest positive integer for which the equa- 

lity :‘i, (s) 22 GIL0 (4, 0 < s < T 352 -- T& I:: 

is fulfilled for some v+* = uhO* E I),. By the definition of a c-quasi-strategy there 
exists a subsequence {g” j_= gnkl such that 

2 (s; 0, zD, gk iv,*), n+*, t) =+ 2 (4 =r s (S; 6, 20, go (u+*), v+*, t) S E 1% tl 

Case 1, k, 2 2. Then from the sequence of 

sk* (S) := ‘ (4, 0, 26, g’; (vO*), vO*r ii 

(:: I 

by virtue of the compactness of the set of motions, we can choose a SubSequence of 
21(j* (s) converging uniformly on 10, t] to some motion a* (3) = 2 (S; 0, 20, m*v h*, f)* 

Since equality (‘2) is fulfilled on the interval 10, T, - $,I , then 
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6” (an*) (s) E gk (v+‘) (SL O<S<dm--Tk, 

and, consequently, by virtue of (3) 

311 (s) =+ 2 (s), O<s<r7,-rTllo 

whence Z* (s) E z (s) and U” (s) -E go (v+*) (s), 0 < s f Trn - zkO. We COmplete the 

construction by setting g, (v,,*) (s) - ~0 (S), 0 d a % t. 

Case 2. k, G i, The functions u+* and uU* coincide on the interval IO, Tm - T:k] , 

therefore, k 
gli (r+*)(s) G g (c,,*)(s), “k UdSQTm-T1 

and, consequently, in accordauce with (3) 

z,,. * (S) = i (S; 0. 71, &, ,h- (u,,*), 2.,,*, I) =+ z (s; 0, 20, go (u+*), v++, t), s E [O, rm - .51] 

By choosing a subsequence Zkj* (s) as needed, we can take it that 

“ij (s) =+ 2 (s; 0, 20, NO*, z’o*. r), s E 10, r1 

where, by virtue of what we have said above, u,, (s) E go (v+*) (s) 0 d s d Trn - II. We 

complete the construction by setting g, (uU*) (s) E u. (s) 0 < s < t. 
It is easily checked that in both cases the mapping g, constructed is a r-quasi-strategy 

and go < g,, which contradicts the maximality of go. Thus, Do = VI, which is what 

we required. 

9. With each t > 0 we associate an operator P1*: 2H + 2’ in the following way: 

Ft+ (X) = (-) FUl (‘V, x c Ii 

(the intersection in the right-hand sy:e is taken over all partitionings of interval 19, rJ 

We note the following properties of operator F1*: 

I’. If X is closed, then Ft* (X) is also closed. 

8’. Let X be closed and let (~,“)~~, be an arbitrary sequence of partitionings 
of interval (0, tl such that 01~ < e$+’ (k = i, 2, .,.) and I qk 1 - 0 as k - 00. Then 

F,* (X) = ,I, Polk (x) 

9’. If X is closed and 0 < e < t, then Ft* (X) C F, (F,, (X)). From property 
9’ there directly ensues (see [a] ) 

Theorem 1. Let z,EH, TE (0, + w).Then if 

20 E F,* (.\I) 

the differential game (1) can be completed from the point z. in time T in the sense of 
statement ( I ). 

4. The mapping gl = g (z,, M, t) : 1” + lit, defined on all Vt, is called a t-stra- 
tegy at point z. relative to M if: 

a) whatever be IA*, v?* E V’, from the equality vi (s) -_= v, (s) (0 < s -< E < I) 

follows the equality g (cl*) (s) G f (v’*)(s) (0 -< s < E); 

b) for any u* E V the inclusion z (t) = z (t; 0, zo, g (of), u*, t) EM holds. We 
note that, obviously. every strategy g = g (z,, M, 1) is an w,-quasi-strategy at point 2” 
relative to M for any partitioning ot of interval 10, t]. 

Theorem 2. Let z. E R, Y’E (0, + 00). Then if z. E P,* CM), there exists a 
T-strategy g - g (to, M, 7’) such that the inclusion 
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z ft; 0, 20, g (@), v*, T) E p;_, (M). 0 f t < T 

holds for any control V* E V’ . 

Corollary. Under the hypotheses of Theorem 1, differential game (1) can be com- 
pleted from the point z. in time T in the sense of statement ( I I ) . 

Indeed, it is sufficient if at eacn instant t the player c/ sets his own control I( (1) 

equal to u (Lf = g (vl*) (t1 

where g is the T-strategy given by Theorem 2, 

Ut 0) = u (s) 0 < s < 1, 01 (s) G v (t). 1 < s c: 7‘. 

The inverse of Theorem 2 also proves to hold. 
Theorem 3. Let z0 E R, TE (0, + LX) , anb let the T-strategy 6 = g (z,,M, 7’) 

exist. Then z, E F,.* (Mf. 

Proof. It is obviously sufficient to show that .Q E FWT (M) for any partitioning or. 
of interval [O, T]. By virtue of Assertion 1 the latter is trivial because, as was noted 

above, every T-strategy is anwT-quasi-strategy. 

6. For linear differential games, i. e. tor games given by the equation [5] 

dz 1 & = f:: - I, !- I. (5) 

the operator F, can be computed in explicit form. By direct calculation we verify that 

and, consequently, 

F,* (X) = e-“‘if’ (t), 

where U7 (1) is the alternating integral from [5]. 

16) 

6. We proceed to study the possibility of the termination of a linear differential 
game in the sense of statement ( I I I ) . We first recall certain conceptsC5, 81. Let 

-4 c R, fi :: R, and let rr and /< be real numbers. By definition, the set aA 1- @B con- 

sists of those, and only those, vectors z E R which are representable in the form z --= 

ax f f’y (u E A. ?t _= n:~. The set I1 = A r B of those, and oply those. vectors z E R 

for which z -+ B E A , is called the geometric difference of sets A and B , It is easy 

to verify the following. 

Assertion 2. If 4 and t3 are convex and 11 is compact, then (A + B) Z. R--A- 

Corollary. If A, B. C are convex. (3 is compact, and A f C = 3 -t C, then 

‘4 -= B. 

Let A (1) be a compact convex set depending continuously (by inclusion) on t >, 0 

By the integral c 

c ‘4 (r) df, c>b&O 
b 

we mean a compact 133 convex set consisting of those, and only those, z E R which can 
be represented in the form c 

Z’ 
s 

a (r) kc 
b 

where U* = (a (s), b < s .< c} is a measurable vector-valued function satisfying the 
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inclusion a (b) E A (4 for every I . From the definition given it follows immediately 

that e d .I 

s A 6) df + l A (5) dr - [ A (T) dr 
b c ‘, 

(7) 

Finally, we present without proof the following, easily verifiable - 

Ass.ertion 3. Let A be an ellipsoid of full dimension inR , 

Then there exists a convex set B c R such that 

z = max ai, 
K<i<n 

p = min ai 
I(ign 

where S, is the unit sphere in R; moreover, if A = A (t) depends continuously (by 
inclusion) on t, retaining full dimension in R, then B = B (r), u = c (t), p = p (t) 

also are continuous. 

7. Let linear differential game be described by a vector differential equation (5) in 
which c is a constant square matrix of order n; let P and Q be convex compacta, 

and the terminal set M be representable in the form M=M,,+ IV,,, where M0 is a linear 

subspace.of space R, W, is a convex compactum in the orthogonal complement L of 
M,, in R. We denote the projection operator from R into L by II and the unit sphere 

in L by S. By L,, we denote the support plane to lo (i.e. a set of the form L, = 
M, + a, where a E R, M, is a linear subspace of space R , such that the set P - a 
belongs to M, and has interior points therein). Let S, be the unit sphere in M,. 

We assume that the following conditions are fulfilled for game (5): 
Condition 1. We can find lLO > 0 and a convex set P’ c R such that P + 

P’ = A”SO. 

Everywhere subsequently we agree to mean by r an arbitrary positive number. We 
consider the mapping @ (r) = nerc: R - L of space R into L. 

Condition 2. The mapping 0 ir): M, -+ L, treated as a mapping from MI, into 
L, is an “onto” mapping, 

Lemma 2. Suppose the Conditions 1 and 2 have been satisfied for game (5). Then 

there exist a compact convex set P (r) c L , depending continuously (by inclusion) on r 
and a continuous positive function y (r) such that 

@ (r) P + P (r) = y (r) S, r> 0 (8) 

Proof. In accordance with Condition 1 

0 (r) P + @ (f) P’ = ho0 (r) So 

From Condition 2 it follows that k,,Q, (r) J’,, is an ellipsoid of full dimension in L, de- 
pending continuously on r, and, consequently (Assertion 3) 

h,@ (r) S, + B (r) = y (r) S, r > 0 

where B (r) and y (r) are continuous. We complete the proof of the lemma by sGtting 
P (r) = Q, (r) P’ + B (r). 

Let t > 0. We consider the set 
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W* (t) - ( Wtr .:- j 0 (r) Pdrj Z 
0 

We assume that the following conditions are fulfilled : 

Condition 3. For any t > 0 the set W* (t) is nonempty and 

1 I 

W* (t) + 1 0 (r) Qdr = WO $- s 0 (r) Pdr 

0 0 

Condition 4. For any i > 0 we can find ?, (t) > 0 such that 

w+ (f) = (w* (1) : h (t) Sl + h 0) 6s (10) 
It is easy to verify the following - 
Assertion 4. Suppose that Condition 3 is satisfied for differential game (5). Then 

cv (t) = E (P‘Pdr z erCQdr) = MO + W* (t) 

MC.0 

Thus, if the inclusion 
neT(‘zn E w* (II‘) 

is satisfied, then in accordance with Theorem 1 the linear differential game (5) can be 

completed from the point z. in time T = T (zO), where T (z,,) is the minimum of all 

T Z 0 for which inclusion (11) is fulfilled. This result is contained in the following 
theorem. 

Theorem 4. Suppose that Conditions 1 - 4 are fulfilled for the linear differential 
game (5). Then, if inclusion (11) is fulfilled, game (5) can be completed from point 20 

in time 2’ = T (zo) in the sense of statement ( I I I ) . 

Proof. For each 1,> 0 we denote by e (1) the largest positive number e 5. t I 2 
(existing by virtue of Lemma 2) for which the inequality 

i.(t) - ( ; (r) dr >, 0 

,1’, 

is fulfilled. Let us show that for any t > 0 the following relation holds: 

w* (t) = I W+ (t -- e (t)) X 1 0 (r) Qdr 1 + \ 0 (r) Pdr 

‘-L(l) :--E I) ‘( 

Indeed, in accordance with the corollary to Assertion 2, from equality (9) 
I I 

w* (t) -I- 5 @ (4 Qdr = W* (t - e(t)) + \” CD (r) pdr 

whence, by virtue of (8). ‘-‘(‘) f t-;‘(/, 

W+(t)+D+ 1 0 (r) Qdr = W* (t - F (t)) + 5 (t) S 

1--L(l) 

(12) 

we have 

DZ f P(r)dr+(k(t)- S +r(r)dr)*J 

l--c(f) I-L(l) 

Therefore, on the basis of the corollary to Assertion 2 we obtain, using equality (10). 

iW* (t) ? h(t) s] + D - W* (t - e (t)) 1 \ 0 (r) Qdr 

f-;(f) 
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Adding 1 

s 
CD(r) Pdr 

t-r(t) 
to both sides of this equality, we obtain the desired relation (12) (see the expression for 

D and formula (10)). 
We set T, = T,(zo), E~ = E (T (z,,)). Since II e”‘@(’ z, E R’* (Td, in accordance with 

(12) we can find a control u$ = {u, (sf , 0 .< s f ~1) of player ii such that 

TO TO 1 

nets%*-- c nerc~(TO - r) dr E 
I 

W* (To - &I) : 

T& 
I 

IWF Qdr 1 
TO- E1 

Therefore, whatever be the control v* = (8 (s), 0 < s -S e,) of player 17, for the point 
$1 

21 = 2 (El) FE 2 (ej; O,ZO. u0*. v*, 81) = e E1C 
i s 

zo- e -6c [ 1.50 (s) - 8 (s)] ds) 

we have 
a 

‘1 
&o-E*) (‘*, --z rreT”C,fl - 

s 
@ ne”‘lc,, (To - r) clr i- s’ n&u f?“,, - r) dr E W*(Tn - 81) 

TO--&l TO-EI 

and, consequently. T (2,) ,:.I T, - F!, whatever be the control of player V. Theo- 

rem 4 is proved if only we note that all the arguments presented above are appIicabIe 
to the point “1 - z (Q) , etc. 

Pon~~agin’s verifying example 191 satisfies the hypotheses of Theorem 4, 

The author thanks E.F. Mishchenko for guiding the work. 
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